The Bochner-Riesz means for Fourier-Bessel expansions: Norm inequalities for the maximal operator and almost everywhere convergence
نویسندگان
چکیده
In this paper, we develop a thorough analysis of the boundedness properties of the maximal operator for the Bochner-Riesz means related to the Fourier-Bessel expansions. For this operator, we study weighted and unweighted inequalities in the spaces Lp((0, 1), x2ν+1 dx). Moreover, weak and restricted weak type inequalities are obtained for the critical values of p. As a consequence, we deduce the almost everywhere pointwise convergence of these means.
منابع مشابه
About summability of Fourier-Laplace series
Abstract In this paper we study the almost everywhere convergence of the expansions related to the self-adjoint extension of the Laplace operator. The sufficient conditions for summability is obtained. For the orders of Riesz means, which greater than critical index N−1 2 we established the estimation for maximal operator of the Riesz means. Note that when order α of Riesz means is less than cr...
متن کاملAbout the Almost Everywhere Convergence of the Spectral Expansions of Functions
Abstract. In this paper we study the almost everywhere convergence of the expansions related to the self-adjoint extension of the LaplaceBeltrami operator on the unit sphere. The sufficient conditions for summability is obtained. The more general properties and representation by the eigenfunctions of the Laplace-Beltrami operator of the Liouville space L 1 is used. For the orders of Riesz means...
متن کاملConvolution and Maximal Function For
For a family of weight functions, hκ, invariant under a finite reflection group on R, analysis related to the Dunkl transform is carried out for the weighted L spaces. Making use of the generalized translation operator and the weighted convolution, we study the summability of the inverse Dunkl transform, including as examples the Poisson integrals and the Bochner-Riesz means. We also define a m...
متن کاملar X iv : m at h / 04 03 04 9 v 3 [ m at h . C A ] 3 N ov 2 00 4 CONVOLUTION OPERATOR AND MAXIMAL FUNCTION FOR DUNKL TRANSFORM
For a family of weight functions, hκ, invariant under a finite reflection group on R, analysis related to the Dunkl transform is carried out for the weighted L spaces. Making use of the generalized translation operator and the weighted convolution, we study the summability of the inverse Dunkl transform, including as examples the Poisson integrals and the Bochner-Riesz means. We also define a m...
متن کاملar X iv : m at h / 04 03 04 9 v 4 [ m at h . C A ] 2 9 Ju n 20 05 CONVOLUTION OPERATOR AND MAXIMAL FUNCTION FOR DUNKL TRANSFORM
For a family of weight functions, hκ, invariant under a finite reflection group on R, analysis related to the Dunkl transform is carried out for the weighted L spaces. Making use of the generalized translation operator and the weighted convolution, we study the summability of the inverse Dunkl transform, including as examples the Poisson integrals and the Bochner-Riesz means. We also define a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 167 شماره
صفحات -
تاریخ انتشار 2013